Extremal paths, the stochastic heat equation, and the three-dimensional Kardar-Parisi-Zhang universality class.

نویسنده

  • Timothy Halpin-Healy
چکیده

Following our numerical work [Phys. Rev. Lett. 109, 170602 (2012)] focused upon the 2+1 Kardar-Parisi-Zhang (KPZ) equation with flat initial condition, we return here to study, in depth, the three-dimensional (3D) radial KPZ problem, comparing common scaling phenomena exhibited by the pt-pt directed polymer in a random medium (DPRM), the stochastic heat equation (SHE) with multiplicative noise in three dimensions, and kinetic roughening phenomena associated with 3D Eden clusters. Examining variants of the 3D DPRM, as well as numerically integrating, via the Itô prescription, the constrained SHE for different values of the KPZ coupling, we provide strong evidence for universality within this 3D KPZ class, revealing shared values for the limit distribution skewness and kurtosis, along with universal first and second moments. Our numerical analysis of the 3D SHE, well flanked by the DPRM results, appears without precedent in the literature. We consider, too, the 2+1 KPZ equation in the deeply evolved kinetically roughened stationary state, extracting the essential limit distribution characterizing fluctuations therein, revealing a higher-dimensional relative of the 1+1 KPZ Baik-Rains distribution. Complementary, corroborative findings are provided via the Gaussian DPRM, as well as the restricted-solid-on-solid model of stochastic growth, stalwart members of the 2+1 KPZ class. Next, contact is made with a recent nonperturbative, field-theoretic renormalization group calculation for the key universal amplitude ratio in this context. Finally, in the crossover from transient to stationary-state statistics, we observe a higher dimensional manifestation of the skewness minimum discovered by Takeuchi [Phys. Rev. Lett. 110, 210604 (2013)] in 1+1 KPZ class liquid-crystal experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introduction to Schramm-Loewner evolution and its application to critical systems

In this short review we look at recent advances in Schramm-Loewner Evolution (SLE) theory and its application to critical phenomena. The application of SLE goes beyond critical systems to other time dependent, scale invariant phenomena such as turbulence, sand-piles and watersheds. Through the use of SLE, the evolution of conformally invariant paths on the complex plane can be followed; hence a...

متن کامل

Universal aspects of curved, flat, and stationary-state Kardar-Parisi-Zhang statistics.

Motivated by the recent exact solution of the stationary-state Kardar-Parisi-Zhang (KPZ) statistics by Imamura and Sasamoto [ Phys. Rev. Lett. 108 190603 (2012)], as well as a precursor experimental signature unearthed by Takeuchi [ Phys. Rev. Lett. 110 210604 (2013)], we establish here the universality of these phenomena, examining scaling behaviors of directed polymers in a random medium, the...

متن کامل

Exact results for anomalous transport in one-dimensional hamiltonian systems.

Anomalous transport in one-dimensional translation invariant hamiltonian systems with short range interactions is shown to belong in general to the Kardar-Parisi-Zhang universality class. Exact asymptotic forms for density-density and current-current time correlation functions and their Fourier transforms are given in terms of the Prähofer-Spohn scaling functions, obtained from their exact solu...

متن کامل

1/f power spectrum in the Kardar-Parisi-Zhang universality class

The power spectrum of interface fluctuations in the (1 + 1)-dimensional Kardar-Parisi-Zhang (KPZ) universality class is studied both experimentally and numerically. The 1/f-type spectrum is found and characterized through a set of “critical exponents” for the power spectrum. The recently formulated “aging WienerKhinchin theorem” accounts for the observed exponents. Interestingly, the 1/f spectr...

متن کامل

Macroscopic response to microscopic intrinsic noise in three-dimensional Fisher fronts.

We study the dynamics of three-dimensional Fisher fronts in the presence of density fluctuations. To this end we simulate the Fisher equation subject to stochastic internal noise, and study how the front moves and roughens as a function of the number of particles in the system, N. Our results suggest that the macroscopic behavior of the system is driven by the microscopic dynamics at its leadin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 88 4  شماره 

صفحات  -

تاریخ انتشار 2013